Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Qiong Shen,<sup>a</sup> Xing-Can Shen,<sup>b</sup> Ming-Hua Zeng<sup>b</sup> and Seik Weng Ng<sup>c</sup>\*

<sup>a</sup>Department of Chemistry, School of Pharmaceutical Sciences, GuangDong Pharmaceutical University, Guangzhou 510006, People's Republic of China, <sup>b</sup>Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

#### **Key indicators**

Single-crystal X-ray study T = 295 K Mean  $\sigma$ (C–C) = 0.010 Å R factor = 0.077 wR factor = 0.234 Data-to-parameter ratio = 6.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Racemic 2,2'-(1,2-dihydroxyethane-1,2-diyl)bis(benzimidazolium) dinitrate

In the crystal structure of the title compound,  $C_{16}H_{16}N_4O_2^{2^+}-2NO_3^-$ , the cation, which lies on a twofold rotation axis, interacts with the nitrate anions, giving rise to a hydrogenbonded layer structure. Received 11 September 2006 Accepted 12 September 2006

## Comment

Bis(2-benzimidazolyl)ethane-1,2-diol is a ligand that can bind to a metal atom in a terdentate manner; the structures of several metal complexes have been reported (Isele *et al.*, 2002, 2005; Shi *et al.*, 2001). There are three forms of the compound, two being optically active as chirality arises from either the Dor the L-tartaric acid reactant. The compound exhibits biological activity; its efficacy against the polio (Akihama *et al.*, 1968; O'Sullivan & Wallis, 1963) and rhino viruses (Roderick *et al.*, 1972) was discovered a long time ago.



The crystal structure of the neutral ligand has not been reported; the attempt to crystallize it from aqueous ethanol to which some nitric acid was added led to the isolation of the nitrate salt, (I) (Fig. 1). The dication lies on a special position of site symmetry 2; the dication interacts with the anions through hydrogen bonds (Table 1), giving rise to a layer structure.

As the compound is racemic, its crystallization in a space group that lacks inversion and mirror symmetry elements is merely coincidental.



#### Figure 1

© 2006 International Union of Crystallography All rights reserved The cation and anion of the title compound, with displacement ellipsoids arbitrary radii. [Symmetry code: (i) 1 - x, y, 1 - z.]

## **Experimental**

o-Phenylenediamine (10.8 g, 100 mmol) was dissolved in 5.5 M hydrochloric acid (100 ml). To this solution, racemic tartaric acid (7.5 g, 50 mmol) was added. The solution was refluxed overnight. The 1,2-bis(benzimidazolyl)-1,2-ethanediol hydrochloride that separated was collected and then neutralized with 10% aqueous ammonia. The yellow base was recrystallized twice from a 2:1 ethanol–water mixture to which several drops of nitric acid had been added.

#### Crystal data

| $C_{16}H_{16}N_4O_2^{2+}\cdot 2NO_3^{-}$ | <i>Z</i> = 2                              |
|------------------------------------------|-------------------------------------------|
| $M_r = 420.35$                           | $D_x = 1.504 \text{ Mg m}^{-3}$           |
| Monoclinic, C2                           | Mo $K\alpha$ radiation                    |
| a = 13.120 (2)  Å                        | $\mu = 0.12 \text{ mm}^{-1}$              |
| b = 7.596 (1)  Å                         | T = 295 (2) K                             |
| c = 10.391 (2  Å)                        | Block, yellow                             |
| $\beta = 116.357 \ (3)^{\circ}$          | $0.35 \times 0.18 \times 0.12 \text{ mm}$ |
| V = 927.9 (2) Å <sup>3</sup>             |                                           |
|                                          |                                           |

#### Data collection

| Bruker SMART area-detector   | 876 independent reflections           |
|------------------------------|---------------------------------------|
| diffractometer               | 839 reflections with $I > 2\sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\rm int} = 0.032$                 |
| Absorption correction: none  | $\theta_{\rm max} = 25.0^{\circ}$     |
| 2266 measured reflections    |                                       |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.1739P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.077$ | + 1.1826P]                                                 |
| $wR(F^2) = 0.234$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.06                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 876 reflections                 | $\Delta \rho_{\rm max} = 1.15 \text{ e} \text{ Å}^{-3}$    |
| 137 parameters                  | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $\overline{D-\mathrm{H}\cdots A}$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------|------|-------------------------|--------------|---------------------------|
| O1−H1o···O3 <sup>i</sup>          | 0.85 | 1.98                    | 2.790 (7)    | 159                       |
| $N1 - H1n \cdot \cdot \cdot O2$   | 0.85 | 2.01                    | 2.845 (9)    | 169                       |
| $N2-H2n\cdots O2^{ii}$            | 0.85 | 2.11                    | 2.839 (9)    | 144                       |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , -z + 1; (ii) x, y + 1, z.

In the absence of anomalous scattering atoms, Friedel pairs were merged. The three N–O distances were restrained to be within 0.01 Å of each other, as were the O···O distances in the nitrate anion. The anion was restrained to be nearly planar. H atoms were placed at calculated positions (C–H = 0.93–0.98, N–H = 0.85 and O–H = 0.85 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H) = 1.2U_{eq}(C,N,O)$ . The final difference Fourier map had a peak of 1.15 e Å<sup>-3</sup> at 2.59 Å from O3, 2.64 Å from O2 and 2.55 Å from H1; attempts to refine this peak as either an O or an N atom led to a large displacement parameter. The peak is probably an artefact as *PLATON* (Spek, 2003) did not find any solvent-accessible voids.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

We thank Guangxi Normal University, the National Science Foundation of Guangxi Province (No. 0447019) and the University of Malaya for supporting this study.

### References

- Akihama, S., Okude, M., Sato, K. & Iwabuchi, S. (1968). *Nature (London)*, **217**, 562–563.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2004). *SMART* (Version 6.36A) and *SAINT* (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Isele, K., Broughton, V., Matthews, C. J., Williams, A. F., Bernardinelli, G., Franz, P. & Decurtins, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3899–3905.
- Isele, K., Franz, P., Ambrus, C., Bernardinelli, G., Decurtins, S. & Williams, A. F. (2005). *Inorg. Chem.***44**, 3896–3906.
- O'Sullivan, D. G. & Wallis, A. K. (1963). Nature (London), 198, 1270–1273.
- Roderick, W. R., Nordeen, C. W., Von Esch, A. M. & Appell, R. N. (1972). J. Med. Chem. 15, 655–658.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, X.-F., Zhang, M.-J., Li, S.-L., Cai, G.-M. & Li, J. (2001). Chin. J. Inorg. Chem. 17, 513–517. (In Chinese.)
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.